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ABSTRACT

This study considers the finite-sample statistical properties of the empirical regularized
maximum correlation estimator used in Kernel Independent Component Analysis through
bootstrap. This study also determined the performance of Kernel ICA as evaluated by the
normalized Amari error index. The correlation is calculated in a reproducing kernel Hilbert
space. Results indicate that the variance of the computed correlation contrast function behaves
as O(nA

) , i.e. the variance decreases at the rate nA which means that the finite sample
calculations seem to indicate that the F-correlation contrast function converges in mean
square to a fixed value for large n. The normalized Amari errors are generally of the order
10-3

, thus the contrast function is able to separate signals with 99.9% accuracy. .

Keywords and phrases: Independent component analysis, kernel, canonical correlation,
bootstrap

I. INTRODUCTION
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1.1 Independent Component Analysis (lCA)

Consider a random vector x = (Xj,X2, ... ,xm) , the components of which are independent
random variables. Suppose that there is an m x m mixing matrix A which mixes the random
variables as follows:

y=Ax; (1)

The vector y is observed and the problem consists of recovering the original vector x
from y. This is called the blind source separation (BSS) problem. ICA is used as a tool in
solving the BSS problem. If the mixing matrix A were known, then the problem is a simple
one consisting of inverting A to recover x. However, since A is unknown, given N
independently, identically distributed observations ofy, we aim to estimate A and recover the
latent vector x corresponding to any particular y by solving a linear system. Let W be the
inverse of A, then:

x=Wy (2)

However, the only known quantity in this expression is the vector y (the observed
mixed signals) while all the others are unknown. The method of independent component
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analysis (lCA) exploits the known independence of the signals in the vector x in order to
derive an estimate of the matrix Wand hence, of the unknown but independent signals in x.

The problem is similar to the classical orthogonal Factor Analysis model in which a
known p x 1 vector x is decomposed into:

x=LF+E

where L is p x m matrix of constants called factor loadings and :IF is an mxl vector of
unknown factors and E is a pxl uncorrelated random errors. The observable random vector x
with p components has a covariance matrix I (where, without loss of generality, we assume
that its mean vector is zero),and that X is linearly dependent upon m unobservable random
variables Ft,Fz,... ,:lFm called common factors and p additional sources of variations E], Ez ... ,
Ep or specific factors. With so many unknowns, the classical factor analysis model assumes
that:

E(F) = 0, cov(F) = I, Ete) = 0 and covte) = IfIa diagonal matrix, and covte.F) =0,

in order to arrive at a reasonable solution.

The solution to this factor analysis problem hinges on a reconstruction of the
covariance matrix of observed vector x knowing that the underlyingfactors are uncorrelated,
the random errors are uncorrelated (with covariance matrix 1fI, diagonal), and the common
factor F and specific factor e are also uncorrelated.

Independent component analysis or ICA runs in a similar vein but instead of using the
covariance structure of the known vector y, we use the stronger requirement ofindependence
among the original source signals.

1.2 Independence

We are going to deal with statistical independence, as a way of characterizing signals.
Independence is a statistical property. A set of signal s is said to be independent if every
signal (component) gives no information on the other signals of the set. The joint probability
density function is then equal to the product of marginal probability density functions.
Independence implies uncorrelated signals but the converse is not true.

Technically, independence can be defined by the probability densities. Denote by
f(y I' Y2) the joint probability density function ofyI and Y2' f(y I) the marginal pdf of y I'

and similarly fey 2) the marginal pdf ofy2' Then Y1 and Y2 are independent if and only if the

joint pdf is factorizable in the following way:

f (y 1, Y2)= f (y 1)f (y 2)

In many instances, the density function 10 is not known. For this reason, it is
necessary to define some other criterion for statistical independence which will not require
knowledge of the underlying probability distribution j{'). Such criteria are called contrast
functions.
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1.3 Contrast Functions Used in ICA

The search for acceptable contrast functions begins by considering the. concept of
entropy (the amount of disorder or independence ). To this end, let y = (Y/,Y2, ...,Ym) and fCo)
be a multivariate density function. The differential entropy of the vector y is given by:

. H(y) = - Jf(y) log fey) dy
(2)

Note that if y were a univariate random variable, the differential entropy reduces to the
classical Shannon's diversity index (Brown, 2000). Differential entropy measures the amount
of disorder present. The Gaussian variable has the largest entropy among all random variables
of equal variance. In order to make (2) scale invariant, we can normalize it to give rise to the
definition of negentropy.

J(y) = H(y gauss) - H(y) (3)

where H(y gauss) is the entropy of the Gaussian random variable. Negentropy can also be

interpreted as a measure of non-gaussianity, i.e. it is zero if y were a multivariate normal
random variable and positive otherwise.

So far, however, all the quantities considered still involve the unknown density
function ji-). We now attempt to derive an approximation of the negentropy function due to
Jones and Sibson (1987). Negentropy is approximated using the cumulants of the distribution.
To simplify the discussion, assume for the moment that Y is a univariate random variable and
it is centered so that is mean is zero and its variance is 1. The third cumulant, or skewness, of
Y can be defined as skew (y) = E { /}. It is a measure of the lack of symmetry of the
distribution ofy. The fourth cumulant, or kurtosis, of y can be defined as kurt (y) == E{ /}-3.
Using these two cumulants, the following approximation for negentropy was derived by
Jones and Sibson (1987)

J(y) =1/12 skew(y)2+ 1/48 kur(y/ (5)

For multivariate random vector y, the individual negentropy approximations for the
individual components are computed. Now, negentropy can be estimated without reference to
the underlying probability distribution using the sample moments.

Further, by using negentropy one can define mutual information. Mutual information
is a natural measure of the dependence between the random variables. Constraining the
variables to be uncorrelated, the mutual information between m (scalar) random variables can
be defined as

m

I(yt ....ym) = J(y) - L J(y;)
i=1

(6)

Since mutual information is the information-theoretic measure of non-Gaussianity, it is
natural to use it as the criterion for finding the ICA transform.
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A general approximation of (6) was formulated by Hyvarinen (1997). He maximizes
the following function that approximates the negentropy:

JG(W) = [E{G(y)}- E{G (v)}] 2 (7)

where v is the standard Gaussian random variable. Maximizing JG(W) allows one to find one
independent component.

1.3 Contrast Function Based on Maximum Correlation

The cumulant-based method provides a poor approximation of negentropy. They
measure mainly the symmetry and the peakedness of the distribution and disregard other
features of the signals.

Bach and Jordan (2003) provided a new approach to the lCA problem based not on a
single nonlinear function, but on an entire function space of candidate nonlinearities. The use
of a function space makes it possible to adapt to a variety of sources and thus makes the
algorithm more robust to varying source distributions. They used the contrast function
maximum correlation and called their lCA program as Kernel lCA.

II. THEORETICAL FRAMEWORK

2.1 Kernel Based Contrast Function

2.1.1 Feature Space and the F-Correlation

Following Bach and Jordan (2003), consider the vector space of functions of
candidate nonlinearities and call this vector space F. We will call this vector space of
functions the feature space. Note that skewness and kurtosis are but two features of a signal.
To best estimate a signal, we need all the (infinite uncountable and countable) features of a
signal. Let F be the collection of all these functions, then F contains uncountably many
functions. Let us consider for simplicity two univariate random variables Xl and X2. Define on
F the F-eorrelation given by:

pF = max corr U; (x,), 12 (x2)) = max
ft,f2eF ft,f2eF

wherefi andji ranges over F.

(8)

To find these correlations, we will utilize Canonical Correlation Analysis (CCA).
CCA focuses on the correlation between the two linear combinations of Xl and X2. The first
canonical correlation is also called the maximum correlation. Now, if Xl and X2 were
multivariate N dimensional random vectors, then we will show later that performing CCA on
these two vectors of dimension N is the same as solving a generalized eigenvalue problem.

The vector space (or the feature space) F is very large indeed. It allows us to identify
all possible features { f }, distinguishable and non-distinguishable features; and correlates
them, so that we are assured of independence when pF= O.



kernels.

and is equal to pF= max corr(t;(xl),f2(X2») by the above formulation of the Mercer
(f" f2 )e f)xF2

2.1.3 Kernelization of the Canonical Correlation

We have defined the F-correlation in terms of population expectation only, we need to
have an empirical estimate of the F-correlation. We will call it the "kernelized' version of
canonical correlation.
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2.1.2 The F-Correlation in Detail

Let F = { <1>(.) /<1> maps a random variable x to <I>(x), a feature of the signal}. Define
the Mercer kernel K:F x F ~ R by the equation K(x,y) = < <I>(x)/ <I>(y) >, where <.I.>
denotes the inner product on F x F. By the Riesz Representation Theorem on this Hilbert
space, every function f f: F can be represented by f(x) = <K(.,x)/f>. Let KI and K2 be Mercer
kernels with feature maps <1>1 and <1>2 and feature spaces Fi, F2• The canonical correlation
between <I>(XI) and <I>(X2) for two random variables XI and X2 is defined as:

pF = max corr ((<1>1 (xl)"t;),(<I>2(X2), f2))
(f" f2)e f)xF2

For fixedJi andJi, the empirical covariance of the projections in feature space can be
written:

cov ((<I>I(XI)"t;),(<I>2(x2),f2)) = J... f(<I>I(xt),J;)(<I>2(x~),f2)
N k=1

= ~ t,(<1>\ (xt), I:Ia:<I>(x: ))(<1>2 (X~), L~la{<I>(xO)

I ~ ~ ~ . (, k \U ( , k \.. .= - LJ LJ LJa;K1 x;,x 1)1\-2 X~,X2P{
N k=1 ;=1 }=1

While in general we can use different kernels for XI and X2, for notational simplicity
we can also consider cases in which the two kernels and the two feature spaces are equal,
denoting them as K and F respectively. Bach and Jordan(2003) proved that if the feature
space F is the reproducing kernel Hilbert space (RKHS), the canonical correlation PF is zero
ifand only if the random variables x, and X2 are independent.

Let ~II ,...... ,X1
N land {x~,......,x~} denote sets of N empirical values of XI and X2

respectively, and {<I>(x:1......,<I>(X~ )}and {<I>(x~1......,<I>(x~)} denote the corresponding
transformations in the feature space. Also, let the data be centered (that is

L~=I <I>(x~ )= L~=I <I>(x~) =0). We denote the empirical canonical correlation as

pF = (XI'X2 ) , which is now based on empirical covariances and not on population

covariances. But since pF = (Xl ,x2 ) depends also on the Gram matrices K 1 and K2 of these

observations, thus we can use the notation pF = (K1,K2 ) to denote the empirical canonical
correlation.

.'
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Putting these results together, the kernelized CCA problem becomes that of
performing the following maximization:

Af(K K )- arK1K2a2 (11)
p P 2 - al~2~~N (( TK K \Yz( TK K \Yz)

a 1 I la1 J ~ a2 2 2a2J ~

where K) and K2 are the Gram matrices associated with the data sets respectively.

We also obtain

which is based on the Gram matrices K) and K2• Here, we note that finding the maximum
correlation is the same as finding minimal generalized eigenvalue.

2.1..4 Regularization

We need to incorporate a regularization constant to make the empirical canonical

estimate a consistent estimator. The regularized F-correlation denoted by P~ is

Taking the derivatives with respect to the vectors a) and a2 and normalizing these
vectors, performing CCA on two vectors of dimension N, with covariance matrix equal to

(
K1K1 KIK2J

is the same as solving the generalized eigenvalue problem
K2K1 K2K2

(/K, K:'J(::J= p(~' :" )(::J
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where k is a small positive constant. Note that the regularized F-correlation inherits the
independence characterization property of the F-correlation. In order to estimate it from a
finite sample, we expand the elements inside the square root to obtain the regularized kernel
CCA:

[[ar(K, + ~. IJa,nai(K, + ~. IJa,n
with its equivalent formulation as generalized eigenvalue problem as follows

•

2.1.5 Free Parameters

The kernel ICA has two free parameters: the regularization parameter k and the width
0' of the kernel (assuming identical Gaussian kernels for each source). It was found out that
setting the parameters k = 2 x 10-3 and 0' = ~ for large samples (N > 1000) and k = 2 x 10.2

and 0' = 1 for smaller samples (N < 1000), the kernel ICA is relatively robust.

2.2 The Bootstrap

In many signal and information processing applications one is interested in forming
estimates of a certain number of unknown parameters of a random process, using a set of
sample values. Further, one is interested in finding the sampling distribution of the
estimators, so that the respective means, variances, and cumulants can be calculated, or in

I

making some kind of probability statements with respect to unknown true values of the
parameters. For example one could be interested in assigning two limits I to a certain
parameter, and in asserting that, with some specified probability, the true .value of the
parameter will be situated between these limits, which constitute the confidence interval.

The bootstrap is a powerful technique for assessing the accuracy of a parameter
estimator in situations where conventional techniques are not valid. The bootstrap does with a
computer what the experimenter would do in practice if it were possible: he or she would
repeat the experiment. With the bootstrap, the observations are randomly reassigned and
estimates recomputed. Given n estimates of the parameter we compute the empirical
distribution function assigning probabilities 1/n, 2/n.....n-1/n to the ordered values of the
estimates. We then generate n uniform random numbers on (0, 1). Assign the kth order
statistic as the sample value if u, ~ kin. The recomputations are done a thousand times and
treated as repeated experiments.
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III. THE FINITE SAMPLE SIMULATION

3.1 Influence of the Source Distributions

From the experiment of Bach and Jordan, 18 density functions were generated. These
are:

(a) Student's T with 3 degrees of freedom;
(b) double exponential;
(c) uniform;
(d) Student's T with 5 degrees of freedom;
(e) exponential;
(f) mixture of two double exponentials;
(g)-(h)-(i) symmetric mixtures of two Gaussians:

multimodal, transitional and unimodal;
(j)-(k)-(l) nonsymmetric mixtures of two Gaussians;

multimodal, transitional and unimodal;
(m)-(n)-(0) symmetric mixtures of four Gaussians:

multimodal, transitional and unimodal;
(P)-(q)-(r) nonsymmetric mixtures of four Gaussians:

multimodal, transitional and unimodal.

The performance of Kernel ICA is robust with respect to the source distributions.
Performance is similar across multimodal (f, g, j, m, p), unimodal (a, b, d, e, i, I, 0, r) and
transitional (c, h, k, n, q) distributions. The Kernel ICA algorithms are particularly insensitive
to asymmetry of the pdf when compared to the other algorithms. Since the performance is
similar across multimodal, unimodal and transitional distributions, and that the Kernel ICA is
insensitive to asymmetry of the pdf, this study attempts to utilize 6 distributions only, some
unimodal and some symmetric. The 6 pdfs are (a) Student with 3 degrees of freedom; (b)
double exponential; (d) Student with 5 degrees of freedom; (e) exponential; (i) symmetric
mixtures of two Gaussians; and (0) symmetric mixtures of four Gaussians;

3.2 Kernel-leA Algorithm

The experiments made use of the same basic procedure for generating data:

(1) N samples of each of the M sources were generated according to their pdfsand
placed into an M x N matrix x.

(2) A random mixing matrix A was chosen, with random but bounded condition
number

(3) A matrix yof dimension M x N was formed as the mixture y=Ax .

The Kernel ICA outputs a demixing matrix W which can be applied to the matrix Y to
recover estimates of the independent components. A high-level description of the Kernel ICA
algorithm for estimating the parameter matrix W in the ICA model is presented below.

Algorithm Kernel ICA-KCCA

Input: Data vectors YI,Y 2 ••.• Y N

Kernel K(x,y)
1. Whiten the data.
2. Minimize (with respect to W) the contrast function C(WJ defined as:

..

•
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a.

b.

c.

Compute the centered Gram matrices KI,K2••• K, of the estimated sources
{X\,X2 ..•. XN}, where Xi = WYi
Define A.~ (K1,K2...K M) as the minimal eigenvalue of the generalized
eigenvalue equation.

DefineC(W)=A.~(Kl'K2...KM) = -.!..log A.~(Kl'K2 ...KM)
2

"

Thus, given the set of vectors YI, Y 2 .•.• Y N, and a given initial parameter W, we set Xi

= WYi , for each i and thereby form a set of estimated source vectors {XI, X 2 .... oX N }. The M
components of these vectors yield a set of M Gram matrices Ki, K2'.... KM, and these Gram
matrices (which depend on W) define the contrast function C(W). The ICA algorithm was
obtained by minimizing this function with respect to W.

In the first series of experiments, we tested Kernel ICA on a two-component ICA
problem, with all 6 unimodal source distributions. In particular, the two source distributions
for the ICA model are the same. For each of the 6 sources (a, b, d, e, i, 0) 20, 30, 60 and 90
sample sizes were generated, resulting to 30 values of the contrast function C(W) each
sample size. Then 1000 bootstrap replicates were generated utilizing these 30 C(W) values.

In the next series of experiments, we tested the algorithms with 2, 4 and 6 components
whose source distributions were chosen at random from the 6 unimodal and symmetric
sources.

IV. RESULTS AND DISCUSSION

This study utilizes 6 distributions only, all unimodal. The 6 pdf's are (a) Student with
3 degrees of freedom; (b) double exponential; (d) Student with 5 degrees of freedom; (e)
exponential; (g-h-i) symmetric mixtures of two Gaussians; and (m-n-o) symmetric mixtures
of four Gaussians.

4.1 Experiment 1 (Two-Component ICA with Same Source PDF's)

In the first experiment, two-component signals of length 250 were generated for
signals coming from the same distribution, i.e. two student's t with 3 degrees of freedom (aa),
two double exponentials (bb), two student's t with 5 degrees of freedom (dd), two
exponentials (ee), two symmetric mixtures of two Gaussians (ii) and two symmetric mixtures
of four Gaussians etc.

First, we generated two-component signal aa. So we have a 2 X 250 original signals
which were mixed using a random mixing matrix of size 2 x 2. These mixed signals were
then fed into the Kernel ICA program which resulted to one value of the contrast function
C(W). Then the same procedure was applied twenty times producing twenty vahtes of C(W).
After this, bootstrap procedure was applied to the 20 values of the contrast function where
one thousand (1000) bootstrap replicates were utilized for estimating the true mean ofC(W).
Then the experiment continued utilizing signals of sizes 2 x 30, 2 x 60, and 2 x 90. Table I
below shows the results of the first experiment.
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Table 1. The mean and variance of the values of C(W) for 1000-bootstrapped
Two-component ICA (same pdf's)

PDF

aa
bb
dd
ee
ii

00

n = 20
0.3126538
0.3262286
0.3210324
0.3106494
0.2971559
0.2992455

MEAN
n = 30 n = 60

0.2361176 0.1679274
0.2584961 0.1802871
0.2523636 0.1676068

0.261729 0.1601975
0.2302171 0.1782419
0.2501374 0.1812705

n=90
0.1354645
0.1361412
0.1312062
0.1369996
0.1371616
0.1532209

n = 20
0.00010202
0.00015163
0.00010092
0.00006473
0.00006926
0.00007458

VARIANCE
n=30 n=60

0.00005219 0.00002856
0.00005190 0.00004089
0.00004898 0.00001803
0.00009152 0.00001960
0.00004657 0.00003805
0.00007381 0.00004777

n=90
0.00000880
0.00001526
0.00000823
0.00005031
0.00001894
0.00003318

It can be seen that the mean tends to decrease as the number of sample of the contrast
function increases. For example, for the two-component lCA aa (two student's t with 5
degrees of freedom), the means of the contrast function C(W) are 0.3126538, 0.2361176,
0.1679274, and 0.1354645 for a 20, 30, 60 and 90 sample sizes respectively. The same
situation is true to the remaining two-component (the same pdf) lCA. Finite sample
calculations show that the means' systematically decrease to zero as expected, Le, that the
F-correlation tends to zero showing that as n increases, the contrast function is able to
separate independent components more effectively.

The variance of C(W) also decreases as we increase the sample size from 20 to 90
samples. For the signals aa, the variances are 0.00010202, 0.00005219, 0.00002856 and
0.00000880 for the sample sizes of 20, 30, 60, and 90 respectively. Again, one can notice that
for the signals bb, dd, ee, ii, 00, the variance of C(W) all decreases as the sample size
increases from 20, to 60 and to 90.

4.2 Experiment 2 (Two-Component ICA with Different Source ]PDF's)

The second experiment was similar to the first experiment, only that it utilized data
coming from two different distributions. Thus, twenty (20), thirty (30), sixty (60) and ninety
(90) two-component signals were generated for signals coming from two different
distributions (i.e. one student's-t and one double exponential (ab), one student's- t and one
exponential (ae) etc.). These were again mixed and fed into the Kernel lCA program
producing 30 of the contrast function C(W). Again, bootstrap procedure was applied to the
output of the Kernel lCA.

For easy reference, we will summarize the following pairs and its corresponding densities:

ab
ad
ae
al
ao
bd
be
bi
bo
de
di
do

one student's t (d.f. =3) and one double exponential
two student's t with (d.f. = 3) and (d.f. = 5)
one student's t (d.f. = 3) and one exponential
one student's t (d.f. = 3) and one mixture of2 gaussians
one student's t (d.f =3) and one mixture of4 gaussians
one double exponential and one student's t (d.f. = 5)
one double exponential and one exponential
one double exponential and one mixture of 2 gaussians
one double exponential and one mixture of4 gaussians
one student's t (d.f. = 5) and one exponential .
one student's t (d.f. = 5) and one mixture of2 gaussians
one student's t (d.f. = 5) and one mixture of4 gaussians

,-
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el
eo
10

one exponential and one mixture of 2 gaussians
one exponential and one mixture of4 gaussians
one mixture of 2 gaussians and one mixture of4 gaussians

Table 2 shows the results of the second experiment.
..

Table 2. The mean and variance of the values of C(W) for 1000-bootstrapped
Two-component ICA's (different pdfs)

PDF MEAN VARIANCE
n = 20 n = 30 n = 60 n=90 n = 20 n = 30 n = 60 n=90

ab 0.311922 0.24932 0.172755 0.147744 0.00009535 0.00004486 0.00003364 . 0.00002671
ad 0.32006 0.242398 0.174149 0.138707 0.00010962 0.00006387 0.00002333 0.00001264
ae 0.323872 0.253826 0.172791 0.129802 0.00013733 0.00010406 0.00003663· 0.00002033
ai 0.315721 0.252701 0.174118 0.133652 0.00009433 0.00004987 0.00001567 0.00002286
ao 0.32375 0.254112 0.172079 0.139584 0.00015364 0.00004883 0.00004491 0.00001719
bd 0.327904 0.250709 0.176238 0.13913 0.00014544 0.00004097 0.00002756 0.00001782
be 0.316789 0.254166 0.172532 0.131175 0.00010817 0.00007060 0.00004752 0.00002067
bi 0.336079 0.239053 0.173407 0.142518 0.00011617 0.00005030 0.00003408 0.00002656
bo 0.333192 0.241044 0.176988 0.141315 0.00017667 0.00005867 0.00005744 0.00001786
de 0.318091 0.257829 0.175305 0.131627 0.00005959 0.00008570 0.00003636 0.00001600
di 0.30341 0.25112 0.16532 0.136707 0.00010109 0.00004791 0.0000176P 0.00001478
do 0.306477 0.258409 0.171458 0.143924 0.00010508 0.00004821 0.00002942 0.00002426
ei 0.314765 0.249945 0.180038 0.144543 0.00012855 0.00004257 0.0000441.4 0.00004502
eo 0.310241 0.239844 0.169062 0.134372 0.00006442 0.00003559 0.00002196 0.00002229
io 0.312499 0.260838 0.177868 0.144687 0.00012723 0.00006087 0.00003924 0.00002669

It can also be observed, similar to experiment 1, that the mean and variance of C(W)
tends to decrease as the number of sample of the contrast function increases.

4.3 Experiment 3 (Four-Component ICA with Different Source PDF's)

The third experiment utilized data coming from four different distributions. Twenty
(20), thirty (30), sixty (60) and ninety (90) signals were generated for signals coming from
four different distributions (i.e. abde corresponds to one student's t with 3 degrees of
freedom, one double exponential, one student's t with 5 degrees of freedom and one
exponential, etc.). Again, these four-component signals were fed into the Kernel lCA
program producing 30 values of the contrast function C(W). Then bootstrap procedure was
applied to these 30 contrast functions.

Table 3 below shows the results of the third experiment. Also included in table is the
result of the six-component input signal result.

Table 3. The mean and variance of the values of C(W) for 1000-bootstrapped
Four-component ICA (different pdf's) and six-component ICA

PDF MEAN VARIANCE
n = 20 n = 30 n = 60 n=90 n = 20 n = 30 n = 60 n=90

Abde 0.564141 0.458337 0.312346 0.253701 0.00005980 0.00004501 0.00001980 0.00001729
Abei 0.562385 0.450788 0.319879 0.255989 0.00004552 0.00004214 0.00002731 0.00001631
Abdi 0.566942 0.452426 0.306974 0.244067 0.00004840 0.00004154 0.00002525 0.00001257
Abdo 0.557911 0.448588 0.302056 0.251451 0.00005133 0.00005956 0.00002160 0.00001606
Adei 0.552133 0.451729 0.306142 0.260737 0.00004055 0.00006266 0.00002574 0.00002366
Adeo 0.564709 0.445342 0.319126 0.263393 0.00005335 0.00003910 0.00003469 0.00002023
Adio 0.557681 0.449652 0.303747 0.248956 0.00006407 0.00002516 0.00001339 0.00001529

Abdeio 0.739197 0.609995 0.422278 0.345686 0.00001922 0.00002304 0.00000989 0.00001098
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Similar with the two experiments, the mean of C(W) tends to decrease as the number
of sample of the contrast function increases. This is to be expected since the objective is to
put the contrast function C(W) close to zero. The variance of C(W) also decreases as we
increase the sample size.

4.4 Relationship of the Variance of the Contrast Function F-Correlation to the Number
of Sample

One objective of this paper is to find the relationship between the variance of the
contrast function versus the number of samples. It is noted at once that the relationship
between the variances and the sample sizes is non-linear i.e. that the variance does not
decrease as a linear function of n. Thus, a non-linear regression model of the form:

. intercept ( f I ) UVariance = e no. 0 samp e or
Variance = An U

between the variance of the C(WJ and the number ofsamples is tried. The results are shown
in Table 4. Observe that the alpha's are all raised to negative powers. We have observed the
same situation with the all the other two-component lCA's as well as the four-component
ICA. Thus, for a two-component lCA with generally different pdfs, we can conclude that if
the number of sample is very large, the variance of C(W) converges to zero.

Table 4. The coefficients of the regression model
Variance =eintercept (no. of sample) a

PDF
aa
bb
dd
ee

ii
00
ab
ad
ae
ai
ao
bd
be
bi
bo
de
di
do
ei
eo
io

abde
abei
abdi
abdo
adei
adeo
adio

abdeio

Intercept
-2.03318
-2.17958
-1.88527
-3.44953
-3.16799
-3.36291
-3.09960
-2.07890
-2.10867
-2.70198
-2.31986
-2.34640
-2.64113
-2.84188
-2.18906
-2.85544
-2.34679
-2.84886
-3.31929
-3.34158
-2.69818
-3.06350
-3.42254
-3.14062
-3.03927
-3.60576
-3.54385
-3.08203
-3.98188

A
-1.49615
-1.31948
-1.62714
-0.52766
-0.76211
-0.55412
-0.77058
-1.43913
-1.31146
-1.06987
-1.22228
-1.25152
-1.00765
-0.90762
-1.26212
-0.93776
-1.30750
-0.92870
-0.56623
-0.70403
-0.96739
-0.88803
-0.67247
-0.86515
-0.89354
-0.52029
-0.56202
-0.94513
-0.52076

..
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4.5 Relationship of the Average Amari Error and the Number of Sample

The "Amari Error" is a measure of performance of an ICA algorithm. A value of zero
indicates perfect match between the found solution and the sources. The greater the value of
the this measure, the poorer the performance. Table 5 below shows the relationship between
the average Amari error and the number of sample.

Table 5. The Average Amari Errors at different sample sizes

PDF AMARI ERRORS
n = 20 n = 30 n = 60 n=90 AVERAGE

aa 0.00089000 0.00204000 0.00148000 0.00189667 0.001577
bb 0.00094000 0.00138333 0.00087333 0.00099333 0.001Q47
dd 0.00145333 0.00152667 0.00060667 0.00111667 0.001176
ee 0.00153333 0.00108667 0.00099000 0.00100333 0.001153

ii 0.00230333 0.00123000 0.00123333 0.00117333 0.001485
00 0.00058000 0.00092667 0.00155000 0.00067333 0.000933
ab 0.00098440 0.00135670 0.00115330 0.00069670 0.001048
ad 0.00108860 0.00122000 0.00055000 0.00134000 0.001050
ae 0.00199670 0.00139000 0.00094670 0.00075330 0.001272
ai 0.00152500 0.00141670 0.00100670 0.00149330 0.001360
ao 0.00184670 0.00156330 0.00108330 0.00115330 0.001412
bd 0.00090000 0.00181000 0.00066670 0.00112330 0.001125
be 0.00120670 0.00189670 0.00070000 0.00150670 0.001328
bi 0.00250330 0.00157330 0.00071000 0.00135670 0.001536

[

bo 0.03280140 0.00129330 0.00044330 0.00119330 0.008933
de 0.00102800 0.00112330 0.00158670 0.00081670 0.001139
di 0.00136110 0.00147670 0.00053670 0.00199670 0.001343
do 0.00140670 0.00163000 0.00155330 0.00131000 0.001475
ei 0.00107000 0.00104330 0.00089670 0.00122330 0.001058
eo 0.00159670 0.00105000 0.00064000 0.00149670 0.001196
io 0.00141670 0.00117000 0.00093330 0.00225330 0.001443

abde 0.00647333 0.00586000 0.00636000 0.00572330 0.006'104
abei 0.00576333 0.00476667 0.00475667 0.00507000 0.005089
abdi 0.00695333 0.00537000 0.00496000 0.00494000 0.005,556
abdo 0.00525333 0.00537000 0.00609000 0.00578670 0.005625
adei 0.00534667 0.00538000 0.00475000 0.00479000 0.005067
adeo 0.00542333 0.00621667 0.00579000 0.00570330 0.005783
adio 0.00551667 0.00651000 0.00625333 0.00603330 0.006078

abdeio 0.00461000 0.00612000 0.00557333 0.00509330 0.005349•

Looking at the rightmost column of the above tables, we can see that the average
Amari errors are generally of the order 10-3•

4.6 Percentile Points of the F-Correlation Contrast Function for Small Sample Sizes

The following table gives the small sample distribution of the contrast function C(W)
based on the bootstrap simulation experiment. The table can be used for testing hypothesis
about the values of C(W) contrast function for small sample sizes.
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Table 6: Percentile Points of the Contrast Function C(W)

Two-component ICA (Same Pdfs)

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

n=20 0.288733 0.292433 0.295333 0.298817 0.323383 0.326883 0.32945 0.332683

n=30 0.230500 0.233117 0.23595 0.2384 0.25825 0.261167 0.26385 0.266483

n=60 0.160433 0.16205 0.1637 0.165633 0.179867 0.182133 0.1843 0.18625

n=90 0.128650 0.129867 0.131167 0.132667 0.144217 0.145967 0.147533 0.1492

Two-component ICA (Different Pdfs)

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

n=20 0.29434 0.29804 0.301133 0.304807 0.331947 0.3359 0.339793 0.343647

n=30 0.23360 0.23602 0.23836 0.24088 0.2599 0.262913 0.2655 0.268767

n=60 0.16106 0.16268 0.164387 0.166307 0.180967 0.183187 0.185267 0.187567

n=90 0.12846 0.129847 0.131173 0.132713 0.144613 0.146413 0.148067 0.150207

Four-component ICA (Different Pdfs)

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

n=20 0.543943 0.546729 0.549014 0.551757 0.569971 0.572514 0.575086 0.577529

n=30 0.436086 0.438257 0.440314 0.442643 0.459557 0.462414 0.464643 0.467114

n=60 0.298786 0.300614 0.302143 0.3038 0.316271 0.317971 0.319643 0.3215

n=90 0.244700 0.246057 0.247343 0.2488 0.259429 0.260943 0.262343 0.264071

Six-component ICA (Different Pdfs)

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 •n=20 0.7296 0.7308 0.7321 0.7335 0.7453 0.7467 0.7479 0.7495,

n=30 0.5985 0.6005 0.6017 0.6039 0.616 0.6176 0.6188 0.6209

n=60 0.4205 0.4243 0.4265 0.4244 0.4264 0.4248 0.4273 0.4229

n=90 0.3379 0.3391 0.3406 0.3414 0.3501 0.3513 0.3518 0.3533

Thus, if one wishes to test the hypothesis that C(W) =0 at the .05 level of significance
with n = 90 or more, knowing that there are at least four components in the signal, then the
hypothesis is accepted whenever the computed correlation is less than or equal to 0.260943,
and conclude that the signals are independent.

v. CONCLUSION

On the basis of the foregoing analyses, the following conclusions are warranted:

1. The variance of the computed C(W) function decreases as O( na ), (in n" , a is a negative
number ranging from - 1.68 to - 0.52 for all samples of size n). This means that increasing
the sample size will decrease the variance of the contrast function C(W). There are, therefore,
indications that the contrast function C(W) converges in mean square to a fixed value for
large n.

2. Since the variances computed for signals coming from different pdf's are generally smaller
than the variances computed for signals coming from the same pdf's, the contrast function
C(W) is able to separate signals from different source distribution functions more efficiently
than when the signals come from the same source distribution functions.

•
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3. The small sample sampling distribution of the contrast function C(W) values appear to
range within a very narrow band and varies with different sample sizes.

4. Since the normalized Amari errors are generally of the order 10.3, then the contrast
function C(W) is able to separate signals with 99.9% accuracy. (Note that the non-normalized
Amari error can range from 0 to (m-I) but the normalized Amari error ranges from 0 to 1).
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